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Calculation of volume change in ductile band structures 
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Abstract--Volume changes incurred during the development of ideal band structures (infinite shear zones) can be 
readily calculated if one knows the principal directions and principal ratios of total strain within, and adjacent to, the 
ideal band structures. The calculation is greatly simplified if one knows the directions and ratios of the strain that 
generated the band structures, or if the total strain of the host rocks is zero. In some natural deformation zones, 
apparent volume losses according to the band model, exceed 300 and may be unreasonably high. Further 
determinations of apparent volume change will help to judge the physical viability of the band model and its strict 
geometrical requirements. For example, the propagation of embryonic deformation zones may lead to total strain 
patterns that differ greatly from those of band structures. 

INTRODUCTION 

SINCE 1971 the geometric model of ideal shear zones or 
band structures (Ramsay & Graham 1970, Cobbold 1977) 
has been widely used in structural geology and tectonics. 
Large amounts of strain data from natural deformation 
zones are becoming available, and these data may be used 
to judge the physical viability of the band model. For 
example, one might assess whether the total magnitudes 
of dilation predicted by the band model can actually be 
accommodated in continuous rock masses. 

Ideal band structures are infinitely long and have 
parallel planar boundaries beyond which the total defor- 
mation is homogeneous. Within an ideal band structure, 
each concordant lamina experiences a finite translation in 
an arbitrary direction parallel to the boundaries, as well as 
a uniform change in thickness without concomitant 
longitudinal strain. The total heterogeneous deformation 
that generates the band structure may thus be simulated 
by multi-directional shear of a deck of porous cards under 
uniaxial compression normal to the deck. It must be 
remembered, however, that the band model relates a 
particular final state to its initial state irrespective of 
kinematic path. 

Natural deformation zones that resemble band struc- 
tures will deviate from these strict geometrical require- 
ments. For example, the boundaries of major zones can be 
slightly oblique and non-planar. In addition, the defor- 
mation of the surrounding material can be slightly 
heterogeneous. The consequences of such minor depar- 
tures from ideal band structures have not been assessed 
theoretically, so at what point the band model becomes 
inapplicable is not yet known. 

It seems unreasonable on mechanical grounds that the 
total length of natural deformation zones should be 
generated instantaneously. More probably, they start as 
short sigmoidal embryos (Coward 1976) and proceed to 
grow to their final length. Due to superposition of biaxial 
on triaxial incremental strains, the fields of total strain 

could depart significantly from those of ideal band 
structures. 

No sigrnoidal curvature is required if the embryonic 
deformation zones have characteristic triaxial strain fields 
in their end regions (Schwerdtner 1973, figs. 5 and 6, and 
Ramsay 1980, fig. 17b). Upon lateral propagation of the 
embryonic zones, the final geometric form of the middle 
segment of long zones could be indistinguishable from 
that of ideal band structures. Accordingly, k-values (Flinn 
1962) of total band-generating strain (Schwerdtner, 1976) 
that differ significantly from unity would be interpreted as 
being indicative of huge volume changes (Grunsky et al., 
1980). The following contribution deals mainly with the 
problem of calculating such ostensible volume changes by 
assuming that natural deformation zones are ideal band 
structures and that the total deformation is perfectly 
continuous. 

IDEAL BAND STRUCTURES 

The perturbation of the deformation within ideal band 
structures, which have parallel planar boundaries and are 
surrounded by homogeneously strained material (Cob- 
bold 1977), is given by 

E 
1 o ovt/ox3 7 
0 1 3U2/3X3 | (1) 

0 0 1+(aU31?X3)!_] 

where the reference axis X3 is perpendicular to the 
boundaries and dUd~Xj are the displacement gradients of 
the perturbed internal deformation. If the external defor- 
mation around the band structures is zero, a special case 
of homogeneous strain, then (1) describes the entire 
internal deformation (Cobbold 1977). At any point within 
ideal band structures, it is possible to select a reference 
frame such that the local perturbation of the deformation 
can be described by a matrix of biaxial deformation 
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I I 0 dUl/dXa 1 
0 1 0 (2) 

0 0 l+(dU3/dX3) 

in which the axis X t is parallel to the direction of resultant 
simple shear and the axis X3 normal to the boundaries. 

As pointed out by Ramsay & Graham (1970), Cobboid 
(1977) and Schwerdtner (1977), the term 1 + (dU3/dX3) in 
(2) represents a component of simple flattening (> 1 for 
simple extension, < 1 for simple contraction) which is 
solely responsible for the perturbation of the finite 
dilation. This dilation is positive in the case of simple 
extension and negative in the case of simple contraction 
(Cobbold 1977, Ramsay 1980). Ramsay & Graham (1970) 
and Ramsay (1980) chose to put dU3/dX3 = A, the unit 
volume change or cubic dilation. This is correct numeri- 
cally but obscures the fact that the perturbed displacement 
gradient also contains a component of longitudinal 
distortion (Schwerdtner 1977). As employed in their 
equations, A represents the total internal dilation only if 
the external deformation is volume conservative. For 
general states of homogeneous external deformation, a 
total internal dilation proves to be independent of the 
sequence of matrix superposition. Simple mathematical 
equations are derived in this paper which permit com- 
putation of local volume change or cubic dilation from 
principal ratios of total internal strain. Inverse values of 
these local dilation magnitudes may then be integrated 
along traverses across deformation zones to obtain the 
amount of overall normal extension or overall normal 
contraction. It will be assumed that natural features exist 
throughout ductile deformation zones which have re- 
corded the total strain of the rock material. 

solid-body rotation (Schwerdtner 1979). If and how this 
limited information can be used to calculate the magni- 
tude of dilation will now be explored. 

BAND STRUCTURES IN UNSTRAINED 
MATERIAL 

Consider band structures in rock bodies that have 
neither been distorted or compacted during lithification, 
nor subjected to subsequent tectonic deformation. The 
calculation of the total dilation at any point within such 
structures was treated previously (Schwerdtner 1977, 
p. T12). Given the principal ratios A/B, C/B of total bi- 
axial strain (2) at a given location, where A > B > C, and 
B = 1, it was shown that the total dilation is 

A C 
A , = A B C -  I =~ x ~- I. (6) 

Note that (6) can be used for apparent band structures 
in prestrained material if natural features are available 
which have recorded the finite increment of deformation 
that generated the deformation zones. Such features 
could be ductile porphyroblasts or pseudomorphs 
which postdate the wall rock deformation but predate the 
apparent band structures. Excellent examples of in- 
cremental strain gauges within minor shear zones are 
found in prestrained amphibolites near Parry Sound, 
Grenville Province of Ontario (Schwerdtner et al. 1974). 

In many regions, suitable incremental strain gauges are 
lacking, and the apparent volume change in deformation 
zones must be determined from the contrast between the 
internal and external total strains (Schwerdtner 1976). A 
treatment of this problem follows. 

ROTATIONAL DISTORTION AND DILATION 

Consider a homogeneous linear transformation speci- 
fied by an asymmetric matrix with the general coefficients 

D,, D,2 013 7 

D21 D22 D23/  " (3) 

D31 D32 D33 J 

This finite deformation can be split into a state of 
rotational distortion with the components (~o) and a 
state of dilation specified by the dilation factor di = 
3x/(A + 1) (Schwerdtner, 1977). Accordingly, 

Dis = 6-@iS. (4) 

For plane deformation (Jaeger 1962, p. 25) 

33 = DtlD22 - DtzD2t. (5) 

For triaxial deformation, 6 3 is equal to the expanded 
determinant of (3), which will be employed below. Equa- 
tions 3-5 are of little direct use in estimating the dilation 
in narrow deformation zones because the structural 
geologist can determine merely the directions and prin- 
cipal ratios of internal and external strain. Most impor- 
tant, he rarely knows the direction and magnitude of 

BAND STRUCTURES WITHIN STRAINED 
MATERIAL 

It is customary to split the total internal deformation of 
band structures into two parts; an overall strain followed 
by a strain perturbation (Cobboid 1977). This procedure 
implies nothing about the kinematics of the deformation 
path. The perturbation strain may predate or postdate the 
overall strain, two possibilities which have been con- 
sidered in recent papers by Cobbold (1977) and Ramsay 
(1980). More often, the two strains will be simultaneous or 
at least partly contemporaneous. 

Consider a general overall strain that predates or 
postdates the strain increment which generates a band 
structure. Let both strains have the same axes of reference. 
Employing (5) or its triaxial equivalent for the total 
internal deformation, we find that the total internal 
dilation is 

A, = 6~ J 3, a _ 1, (7) 

where 3, is the dilation factor of the external strain or 
general overall strain and fib is the dilation factor of the 
strain increment which generates the band. Unlike the 
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total internal deformation (Ramsay 1980), A, does not 
depend on the sequence of superposition of the two finite 
strains. Because of the high symmetry of the dilation 
matrix (Schwerdtner 1977), this result is not unexpected. 
It demonstrates also that, given constant values of At and 
tS~, the value of tSo does not vary with the path of the 
internal deformation. 

In most geological structures 6~ is unknown, but 
fi~/6~ may be estimated. If one puts tS, = 1 (no dilation of 
the host material), then At = 6~ - 1 within the apparent 
band structures. This procedure will be followed in the 
remaining sections of. the paper. Although the subsequent 
treatment assumes that band structures are superimposed 
on prestrained rocks, the results obtained are valid for any 
kinematic path. 

Given natural features that indicate the direction of 
simple shear in apparent band structures, A, can be readily 
calculated from the ratios of total strain. The situation is 
more difficult where the direction of resultant simple shear 
is unknown. 

Shearing direction known 

Ramsay (1980) recognized th'at the total internal 
deformation may be treated as two-dimensional strain if 
the X :axis  is parallel to the shearing direction. Using the 
classical transformation equations, he derived a series of 
implicit expressions that permit calculation of A~ = A,. 
The following section contains an alternative treatment of 
the problem by means of coordinate geometry, which 
yields a set of explicit equations. The approach is similar 
to that adopted in a previous paper (Schwerdtner 1973). 

Let the state of homogeneous prestrain in the XI, X3 
plane of the band structure be represented by an ellipse 
with a specific orientation and relative length of the 
extreme radii A~, and A3. This external hemi-eUipse is 
subjected to a deformation (2) within the X~, X 3 plane to 
the internal hemi-ellipse of radii B~ and B3 (Fig. 1). The 
dilation At can be calculated without knowing the solid- 
body rotation associated with the external strain (cf. 
Ramsay 1980, equations 26-29). 

Given a specific value of A I / A  3 one may choose 
arbitrary magnitudes of A~ and A 3 for the present 
purpose. The equation of an oblique ellipse is 

cos2 • sin' ~ {.sin ~, cos ct sin ~, cos. a~ 
+ Jx -2 J 

~sin 2~ cos 2 ~ X  2 xX, 3=1 (8) 

where ~t is the angle between the direction of A ~ and the 
X:axis.  Call the bracketed sums in (8) R, S, T, re- 
spectively, and let y be the resultant amount of simple 
shear and f the component of simple flattening in (2). 

Now the deformation associated with the band struc- 
ture is 

x~ = X~ + YX3 (9) 

X 3 ~- f 'X 3 

where x~, x 3 are the coordinates of a displaced point. 
Prior to deformation, the coordinates of the same point 
are  

X t  = xl  - Yx3/f (10) 

X3 = x3/f. 

Substituting (10) into (8) gives the equation for the ellipse 
after deformation 

x2R - 2 x ix3(R), + S) / f  + x2(Ry a + 2yS + T)/ f l  = 1. (11) 

This corresponds to an equation 

× x,x3 + + = i 112) 
( BI 

in which B~, B3 are the extreme radii of the total-strain 
ellipse (Fig. I) and '8 is the angle between the direction of 
B i and the x l-axis. Equating the factors of x~ in (I l ) and 
(12) gives 

cos' '8 sin s '8 cos 2 '8 p2 sin 2 '8 
R - + B--V" B----V + B-----C- l l3) 

where p = BI /B  3. This equation can be solved for B~, the 
only unknown quantity. Thus 

BI = ~/(o 2 sin 2 ,8 + cos 2 '8)/R. (14) 

As B 3 = B ~/p the area change within the X 1, X 3 plane can 
be calculated; this is equal to the local dilation through- 
out ideal band structures. It can be seen that 

At = (BIB3 - AIA3) /AIA3 .  (15) 

Alternatively, A, = f - 1 can be found by equating the 
corresponding factors of - 2 x l x  3 and x], respectively, in 
(11) and (12). This procedure also yields the value ofy and 
is similar to a method mentioned by Ramsay (1980, p. 96). 
The present method (13-15) is much simpler. 

Prestroined rock 

Fig 1. Oblique section ( X t X  3 plane) through the ellipsoids of external 
and internal total strain for the special cast of umform deformation in an 
ideal band structure whose direction of resultant simple shear is known. 

Shearing direction unknown 

Where natural indicators of the shearing direction are 
absent, one has to choose an arbitrary orientation of the 
X:axis  within the boundary plane of an apparent band 
structure. This means that an ellipse of prestrain in the X1, 
X3 plane transforms into another ellipse oblique to the 
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X t, X3 plane, an effect which renders the two-dimensional 
treatment invalid. Therefore (2) must be replaced by a 
matrix similar to (1). Instead of transforming an oblique 
ellipse, one must transform an oblique ellipsoid whose 
principal axes are A 1 > A 2 > A 3 and whose orientation is 
specified by a set of 9 direction cosines (a~j). The cor- 
responding equation is 

2 -2  A; + A; +   j,4j 
-t- 2 a l j a 2 j A ' j  2 X 1 X 2 + 2 a 2 i a 3 j A ;  2 X2  X 3  

+ 2 a t j a 3 j A ]  -2 X!  X 3 = 1 (16a) 

or more simply, 

9ijX~ Xj = 1 (16b) 

in which the 9o = gj~ are coefficients. 
According to (1), the incremental deformation matrix at 

a point within a band structure is 

0 1 Sz3 (17) 

0 0 f  

where St 3 and Sz3 are components of simple shear andfis 
the component of simple flattening normal to the band 
structure. The transformation equations are therefore, 

xx = X I  +$13X3 

x2 = X2 + $23X3 (18a) 

X 3 ~ f X  3. 

X l  = x t -- S t 3 x 3 / f  

X2 = x2 - $23 x3 / f  (18b) 

X3 = x3/f. 

Combining (16) and (18), 
2 2 911X! +933X2 +f-  2(gt 1S23 + 922S223 -.t-933 

+ 2912S13S23 -- 2~13S13 -- 2923523) X32 

+ 2 9 1 2 X I X 2 - - 2 f - I ( 9 2 2 S 2 3 + � t 2 S I 3 - - 9 2 3 )  XzX 3 

- - 2 f -  1(91 ISI3 4"912523 - -913)  XtX3 "~ 1. (19) 

The factors of x 2, etc. may now be equated to those of 
the total strain ellipsoid. Its equation has the same form as 
(16), but the symbols B~ for the principal radii and b 0 for 
the direction cosines are employed. The factors of x~ yield 
the equation 

911 ---- ( b t l / B t )  2 + (b12/B2) 2 + (b13/B3) 2 (20) 

in which b~ is known, B1/B2 = p and Bt /B3 = ix. Thus 

911 = (bi t /B1)  2 + (b12p/Bl)Z +(b t3a /B t )  2 (21) 

and more importantly, 

Bt = {(b~l+b,zpZ+bZa~Z)/�tl}t/z.2 2 (22) 

Using the values of p and a one can calculate B 2 and B 3. 

Finally, the volume change associated with the develop- 
ment of a band structure is 

A, = ( B I B 2 B 3 - A I A 2 A 3 ) / A t A z A 3 .  (23) 

The absolute values of Ai may be obtained by assuming 
zero volume change for the prestrain (cf. Schwerdtner 
1977). It should be noted that, as in the method outlined 
by Ramsay (1980), the preceding equations are highly 
sensitive to small changes in principal directions 
(Schwerdmer 1974). In view of the information available 
to the geologist, this problem cannot be overcome at 
present. 

Another problem is that the calculation of B 1 involves 
squares of ratios of principal strain, which can be quite 
inaccurate. According to Schnorr & Schwerdtner 
(1981), the precision of strain ratios obtainable with the 
Robin (1977) method is -i-10% for a common type of 
deformed granite. This suggests that the equations for At 
derived above may be useless for identifying ostensible 
volume changes of a few tens of per cent. A calculation of 
the total error of At, however important, is beyond the 
scope of the present paper. 

PRELIMINARY APPLICATIONS 

Apparent volume loss in narrow deformation zones has 
been reported by Orunsky et al. (1980), Kligtield et al. 
(1981) and Stone & Schwerdtner (1981). The largest 
apparent values (Table 1) have been found within the 
Grenville Front Tectonic Zone (Grunsky et al. 1980). 
These values were calculated by applying (6) to strain data 
obtained by Themistocleous & Schwerdtner (1977) in a 
mylonite zone adjacent to which, a set of discordant dykes 
had suffered no appreciable strain. 

Themistocleous & Schwerdtner's (1977) ratios of 
total internal strain are based on Ramsay's (1962)concept 
of flattening of concentric folds, which has been discre- 
dited by later modelling (Hudleston & Stephansson 1973). 
However, Ramsay's (1.962) concept is possibly valid for 
the development of tight minor folds within major 
mylonite zones. In this structural environment, the in- 
trinsic rheological contrast between a medium-grained 
tonalite and narrow aplitic dykes (cf. Hudleston 1973, 
p. 42) is apt to have decreased greatly as the buckles 
tightened and the original differences in grain size, texture 
and mineral assemblage between the two rock types 
diminished during progressive mylonitization (Themis- 
tocleous & Schwerdtner 1977). 

Like Themistocleous & Schwerdtner (1977), Stone 
based his calculation of the strain tensor on measure- 
ments of magnetic anisotropy (Stone & Schwerdtner 

Table 1. Local apparent volume loss (--A,) in the Grenville Front 
Tectonic Zone, Central Ontario 

Fold No. A/B C/B -Af(%) k (total strain) 

1 3.06 0ol7 48 0.50 
2 6.34 0.06 62 0.43 
3 3.19 0.10 68 0.33 
4 1.49 0.22 67 0.19 
6 1.61 0.32 49 0.35 
7 1.71 0.21 64 0.26 
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1981). For a suite of mylonitized granitoid rocks, he was 
able to determine k (Flinn 1962) by using Fry's (1979) 
method and obtain close correspondence to k (magnetic 
anisotropy). The low values of k (total strain) in ductile 
deformation zones furnish the strongest evidence of 
apparent volume loss. 

As pointed out by Themistocleous & Schwerdtner 
(1977), the errors in the strain ratios (and more drastically 
of A, in Table I) could be quite large. In particular, the 
discordant aplitic dykes could have been thickened by 
10-20% prior to mylonitization. This prestrain could 
have produced a flattening foliation in the tonalite which 
was later utilized as a plane of simple shear. Accordingly, 
the walls of the present mylonite zone would be parallel to 
the early flattening foliation (Schwerdmer 1973). This 
scenario may also be applicable to regional mylonite 
zones like the Sydney Lake fault zone (Schwerdtner et al. 
1979) which transect elongate granitoid bodies that 
appear to have been emplaced concordantly. 

The effect of concordant simple shear on the shape of 
oblate spheroids (primary flattening) was investigated 
using elementary matrix operations and several equations 
derived by Jaeger (1962, p. 23-33). The results are given in 
Table 2 and Fig. 2. It is apparent that the ostensible 
volume loss depends mostly on the magnitude of primary 
flattening, whereas the k-value of total strain depends on 7 
as well as the magnitude of primary flattening. Note that 
for reasonable magnitudes of indiscernible primary flat- 
tening ( < 20%) the ostensible volume loss is < 30°/0 within 
• a realistic range of y. A comparison of the corresponding 
magnitudes of total strain (Table 2) with those for Folds 
4-7 (Table I ) shows that the apparent volume loss in the 
Grenville Front Tectonic Zone cannot be explained by the 
simple model of concordant shearing unless the value of 
-A, has been systematically overestimated by > 20°/0. 
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Fig. 2(a). Apparent volume loss ( - A) due to concordant simple shearing 
of three oblate spheroids whole degree of primary flattening is given in 
per cent (Table 2). {b) Change in k (Flinn 1962) with increasing y and for 

different desrees of primary flattening (cf. Fig. 2a). 

CONCLUSIONS 

The apparent local dilation according to the band 
model is most readily calculated throughout narrow 
deformation zones ff the host rocks are devoid of strain, or 
if geological features are available that recorded the 
deformation increment which generated the deformation 
zones .  

Table 2- Effect of concordant simpk shear on pure foliation with three primary flattening values 

Amount (%) of primary 
flattening extension 

7 (magnitude Principal magnitude - A (ostensibk 
of simple k-value of total strain volume 

shear) ( total  main) A B C d e c m a ~ ,  %) 

30 20 
30 20 
30 20 
30 20 
30 20 
30 20 

17 10 
17 10 
17 10 
17 10 
17 10 
17 10 

9 5 
9 5 
9 5 
9 5 
9 5 
9 5 
9 5 

0 0 1.20 1.20 0.70 42 
0.5 0.07 1.27 1.20 0.66 42 
2 0.35 1.93 1.20 0.44 40 
3 0.43 2.50 1.20 0.34 41 
5 0.48 3.76 1.20 0.22 43 

10 0.55 7.14 1.20 0.12 40 

0 0 I.I0 I.I0 0.91 25 
2 0.63 2.14 I.I0 0.44 22 
3 0.67 2-83 I.I0 0.33 23 
5 0.70 4.37 1.10 0.21 24 

7.5 0.71 6.38 I.I0 0.14 26 
I0 0.74 8.41 1.10 0. l I 23 

0 0 1.05 1.05 0.91 13 
0.5 0.50 1.24 1.05 0.77 13 
2 0.79 2.25 1.05 0.43 12 
3 0.83 3.05 1.05 0.32 13 
5 0.84 4.75 1.05 0.20 14 

7.5 0.87 6.97 1.05 0.14 11 
I0 0.90 9.16 1.05 0. II 8 
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If these conditions do not apply it is nonetheless 
possible to calculate the apparent dilation (A,) from the 
contrast between the external and internal total strains. 
Because A, is independent of the kinematic path. the 
equations derived in this paper are not restricted to band 
structures that are superimposed on prestrained rocks. 
Most importantly, the equations permit the calculation of 
A, independently of y and differ in form from those of 
Ramsay (1980, p. 96). 

Some of the natural deformation zones studied to date 
appear to have suffered large volume losses. It is unlikely 
that this apparent dilation is due to concordant primary 
fabrics in the original rocks. Apparent volume losses of 
> 30°:/o may be unrealistic for some rock types, and may 
indicate that the band model is inadequate for defor- 
mation zones in such rock bodies. 
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